
www.manaraa.com

The Journal of Supercomputing, 34, 201–217, 2005
C© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Communication Benchmarking and Performance
Modelling of MPI Programs on Cluster Computers

D. A. GROVE duncan@cs.adelaide.edu.au
P. D. CODDINGTON paulc@cs.adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia

Abstract. This paper gives an overview of two related tools that we have developed to provide more accurate
measurement and modelling of the performance of message-passing communication and application programs on
distributed memory parallel computers. MPIBench uses a very precise, globally synchronised clock to measure
the performance of MPI communication routines. It can generate probability distributions of communication
times, not just the average values produced by other MPI benchmarks. This allows useful insights to be made
into the MPI communication performance of parallel computers, and in particular how performance is affected by
network contention. The Performance Evaluating Virtual Parallel Machine (PEVPM) provides a simple, fast and
accurate technique for modelling and predicting the performance of message-passing parallel programs. It uses
a virtual parallel machine to simulate the execution of the parallel program. The effects of network contention
can be accurately modelled by sampling from the probability distributions generated by MPIBench. These tools
are particularly useful on clusters with commodity Ethernet networks, where relatively high latencies, network
congestion and TCP problems can significantly affect communication performance, which is difficult to model
accurately using other tools. Experiments with example parallel programs demonstrate that PEVPM gives accurate
performance predictions on commodity clusters. We also show that modelling communication performance using
average times rather than sampling from probability distributions can give misleading results, particularly for
programs running on a large number of processors.

Keywords: parallel computing, cluster computing, performance modelling

1. Introduction

Message-passing on cluster computers is the main programming paradigm used for high-
performance scientific computing. The main reason for using parallel processing is to
reduce the computation time required to execute what would otherwise be very long-running
programs. Because poorly parallelised code reduces the performance that can achieved, there
is great incentive to ensure that parallel programs are highly optimised. Unfortunately, a
lack of sufficiently accurate and easy-to-use performance prediction methods for parallel
programs has necessitated resort to a very time-consuming measure-modify design cycle
to achieve this.

This scarcity of useful performance modelling methods is due to the notoriously com-
plex behaviour of parallel programs, which makes it very difficult to devise adequate mod-
elling methods. The main contributor to this complexity is contention, which causes non-
deterministic delays and therefore non-deterministic program execution. It is very difficult
to accurately predict the performance of parallel programs across a range of execution plat-
forms with different numbers of processors and communication networks. Most existing

www.manaraa.com

202 GROVE AND CODDINGTON

performance modelling systems are either extremely slow or very approximate and do not
accurately model the effects of network contention, which can significantly affect the per-
formance of parallel programs running on large numbers of processors, particularly when
using commodity Ethernet networks.

We have developed a new performance modelling and estimation tool called the Per-
formance Evaluating Virtual Parallel Machine (PEVPM). PEVPM provides a simple, fast
and accurate technique for modelling and predicting the performance of message-passing
programs on distributed memory parallel computers. PEVPM focuses particularly on the
accurate modelling of communication times, including effects of contention and potential
non-determinism on program execution. To do this, it uses a virtual parallel machine to
simulate the execution of a parallel program, based on simple annotations to the parallel
program that could in principle be automatically generated. In order to accurately model the
effects of network contention, PEVPM estimates times for low-level MPI communication
routines based on the number and size of messages currently being passed through the
network, which the virtual parallel machine keeps track of. Another important feature of
PEVPM is that it samples from probability distributions of communication times, rather
than using simple averages.

Existing MPI benchmark programs only provide average communication times, and have
a number of other limitations. We have therefore developed an improved tool for benchmark-
ing MPI communication routines, which can be used to provide detailed communications
timing data to PEVPM. MPIBench uses a very precise, globally synchronised clock to
measure the performance of MPI communication routines, which enables it to generate
probability distributions of single communication times rather than averages of ping-pong
measurements like those used by other MPI communication benchmarks. This allows useful
insights into the communication performance of parallel computers, particularly the effects
of network contention.

PEVPM and MPIBench are particularly suited to measuring and modelling the perfor-
mance of parallel applications on clusters with large numbers of processors or of applica-
tions with significant communication overhead, where network contention and variability
of communication times can be important. This is particularly important for clusters us-
ing commodity Ethernet networks, where relatively high latencies, network congestion and
TCP problems (dropped packets and timeouts) can significantly affect communication per-
formance. These effects are difficult to measure and model accurately using existing tools.
Experiments with a variety of parallel programs with different communication patterns have
demonstrated that PEVPM gives accurate performance predictions on a variety of cluster
computers with different communication networks [9, 10].

In this paper, we give an overview of MPIBench and PEVPM, and present some results
from the application of both of these tools to a standard scientific application running on a
cluster with a commodity Fast Ethernet network. These results demonstrate that PEVPM
can predict actual execution time to within a few percent (and usually within one percent).
We also show that modelling communication performance using average times rather than
sampling from probability distributions can give misleading results, particularly for large
numbers of processors.

www.manaraa.com

COMMUNICATION BENCHMARKING AND PERFORMANCE MODELLING 203

2. Measuring communication performance with MPIBench

There are a number of existing MPI benchmarking tools, including Mpptest [7], MP-
Bench [22], SKaMPI [25] and the Pallas MPI Benchmarks [23]. These tools all determine
the average communication time for point-to-point and collective communication opera-
tions using essentially the same approach: they measure the time taken for many repetitions
of an MPI operation and then compute the average.

We have developed our own MPI communication benchmark, MPIBench [8, 9], which
uses an accurate and globally synchronised clock to overcome some of the limitations of
existing MPI benchmarks. Firstly, the globally synchronised clock enables it to to measure
the communication performance characteristics of all of the processes in an MPI program,
instead of simply measuring the round-trip time for point-to-point communications, or
measuring completion times of collective operations at just a single process. Secondly, and
crucial to the use of MPIBench results for performance modelling, the use of an extremely
fine grained global clock allows timing data to be obtained for individual MPI operations,
instead of just average times calculated over many repetitions of an operation. This gives
MPIBench the unique ability to accurately quantify the performance variability of MPI
operations due to contention, which it does by producing probability distributions (in the
form of histograms) of the times taken to complete MPI communication routines. It is also
possible to use parametrised functions to model the PDFs, based on fits to the histograms
using standard functions [9].

3. Example results from MPIBench

MPIBench allows detailed measurement of all of the main types of point-to-point and col-
lective communication operations in MPI. This section presents some MPIBench results
for the MPI Isend operation (and matching receive operation), which represents the perfor-
mance of MPI’s fundamental point-to-point communication mechanism. Detailed results
from MPIBench for other MPI operations are presented in Grove’s thesis [9].

The measurements described here were done on Perseus [11], a commodity cluster located
at the University of Adelaide. Perseus has 116 dual processor nodes, each with 500 MHz
Pentium III processors and 256 MB of RAM. Individual nodes are connected by commodity
switched 100 Mbit/s Ethernet, built around five 24 port Intel 510T switches with stackable
matrix cards that provide 2.1 Gbit/s of backplane bandwidth per switch. The software
environment comprised of a RedHat Linux 6.2 base, glibc-2.1.3-15 and a Linux 2.2.12
SMP kernel and MPICH 1.2.0. MPIBench was run in a dedicated fashion, i.e. no other user
programs or unnecessary system services were allowed to run during the benchmarking.

Figure 1 shows the average message-passing times for MPI Isend operations over a
range of small message sizes and for various numbers of communicating processes. Figure 2
shows the same information for larger message sizes. Lines of the same type (either solid
or dashed) show results for an increasing number of nodes, while the different line types
show the effects of using different numbers of processes on an SMP node. Lines are labelled
n × p, where n is the number of nodes and p the number of processes per node. The general
effect of increasing the number of communicating processes per node or the total number

www.manaraa.com

204 GROVE AND CODDINGTON

0.0

0.1

0.2

0.3

0.4

0.5

0 128 256 384 512 640 768 896 1024

Ti
m

e
(m

s)

Message size (bytes)

Perseus: Average times for MPI_Isend

64x2
32x2
16x2
8x2
4x2
2x2

64x1
32x1
16x1
8x1
4x1
2x1
min

Figure 1. Average times for MPI Isend using small message sizes with various numbers of communicating
processes on Perseus.

0

2

4

6

8

10

12

14

16

0 8192 16384 24576 32768 40960 49152 57344 65536

Ti
m

e
(m

s)

Message size (bytes)

Perseus: Average times for MPI_Isend

64x2
32x2
16x2
8x2
4x2
2x2

64x1
32x1
16x1
8x1
4x1
2x1
min

Figure 2. Average times for MPI Isend using large message sizes with various numbers of communicating
processes on Perseus.

www.manaraa.com

COMMUNICATION BENCHMARKING AND PERFORMANCE MODELLING 205

of communicating nodes is to increase the level of contention. Lines of the same type (e.g.
n × 1 for different numbers of nodes n) can be easily distinguished by examining their
ordering at the right hand side of the graph, which matches the ordering of the adjacent key.
Increasing the number of processes per node increases the contention for the one network
interface in each node as well as in the backplane network, while increasing the number
of nodes only increases contention in the backplane network. Figures 1 and 2 also show
another curve, labelled min, which indicates the minimum communication time that was
observed between one pair of communicating processes. This minimum time represents the
performance that can be achieved in the absence of contention.

The line marked 2×1 represents the performance of a simple ping-pong message, which
is commonly used as a model of message-passing time. The similarity between minimum
times and average times for this 2 × 1 case highlights the extremely small timing variations
that occur when network congestion is eliminated. When this is the case, message-passing
time T can indeed be closely modelled by the common approximation T = l +b/W where
l is the link latency in seconds, b is the size of the message in bytes and W is the effective
bandwidth of the link in bytes per second. Closer inspection of Figure 2, however, reveals
that there are actually two distinct segments to the data, with a knee occurring at 16 Kbytes.
This is caused by the differences in the way that MPICH sends small and large messages.

Consider the effect on performance of contention in the backplane network, i.e. when
there are a large number of communicating processes. For small messages, message-passing
times become increasingly dispersed with increased numbers of communicating processes,
which shows the susceptibility of the Fast Ethernet network in Perseus to contention. Figure 1
shows that, on average, transmission of a 1 Kbyte message takes 70% longer when 64 × 1
processes are communicating than when 2 × 1 processes are communicating. Modelling
communication times by single-point values (e.g. from a ping-pong test) in situations such
as this will lead to very inaccurate estimates. As the message size increases, however, the
effect that the number of communicating processes has on delays in the backplane network
becomes less noticeable (at least, until saturation of the network occurs) due to the longer
time that the larger messages require for transmission.

Although a rough idea of the effects of contention on message-passing performance can be
gauged from Figures 1 and 2, the effects are far more clearly demonstrated in Figure 3, which
shows a number of performance distributions (plotted as probability distribution functions,
or PDFs) that were recorded for 64 × 2 communicating processes exchanging messages
between 0 and 1024 bytes in size. This shows how minimum and average communication
times relate to the performance distributions that they approximate – the distributions have
a relatively smooth rise from a bounded minimum time, through a peak which occurs very
close to the average time and drop off fairly quickly to some maximum time.

Unlike the minimum time, which is bounded by the performance of a contention-free
message, the maximum time is theoretically unbounded. Usually the tail of the PDF usually
drops off so quickly that it can soon be treated as zero, as is the case for the MPI Isend
results presented here. Severe contention on an Ethernet network, however, sometimes leads
to lost messages and thus retransmissions, which leads to outliers in the distribution at values
related to the network’s retransmission timeout parameters. MPIBench is able to account for
these outliers because it measures the performance of individual messages, unlike other MPI

www.manaraa.com

206 GROVE AND CODDINGTON

Perseus: Distribution of times for MPI_Isend

64x2
(avg)

min

0
128 256 384 512 640 768 896 1024Message size (bytes) 0.0

0.2

0.4

0.6

0.8

1.0

Time (ms)

0

2

4

6

8

10

12

14

16

Normalised PDF/1000

Figure 3. Sampled performance profiles for MPI Isend using small message sizes with 64 × 2 processes
(high contention for the local network interface and network backplane) on Perseus.

benchmarks. These outliers can have serious implications for program performance [9, 28]
because the performance of most parallel programs is strongly influenced by their slowest
process.

Severe performance degradation due to network saturation can be clearly seen in the long
tails of the performance distributions in Figure 4. Figure 2 shows that this degradation starts
to become significant for the 64×1 process case when message sizes reach about 16 Kbytes.
For this 64 × 1 process case that is under consideration, three Intel 510T 24 port switches
were spanned: two using 24 ports and one using 16. The onset of performance degradation
began when a total of approximately 24×84.25 Mbit/s (since 81 Mbit/s is achieved between
two processes for 16 Kbyte messages, plus 3.25 Mbit/s of Ethernet framing overhead) i.e.
2.02 Gbit/s was being delivered between the two fully utilised switches. Since the stackable
matrix cards connecting these switches provide 2.1 Gbit/s of backplane bandwidth each,
it seems that the backplane limit had been reached and the ensuing inter-switch saturation
resulted in greatly reduced performance.

These results indicate that contention significantly affects the performance of small mes-
sage transfers and that the effects of contention should only be ignored for large message
transfers in the absence of network saturation. These performance characteristics must be
taken into account during performance modelling of parallel programs in order to pro-
vide accurate performance estimates. The probability distributions generated by MPIBench
can be used to accurately simulate message-passing communication times for the PEVPM
performance modelling tool.

www.manaraa.com

COMMUNICATION BENCHMARKING AND PERFORMANCE MODELLING 207

0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10 12 14

N
or

m
al

is
ed

 P
D

F
/1

00
0

Time (ms)

Perseus: Distribution of times for MPI_Isend (64x1)

0K
16K
32K
48K
64K

13.0

13.5

14.0

0 2 4 6 8 10 12 14

Time (ms)

Perseus: Distribution of times for MPI_Isend (64x1)
\\

0K

Figure 4. Sampled performance profiles forMPI Isend using large message sizes with 64×1 communicating
processes (high network contention) on Perseus.

4. Previous work on performance modelling

Performance modelling techniques can be classified according to a number of important
characteristics: generality, expressive power, comprehensibility, accuracy and cost. While
there are many existing performance modelling techniques that score well on various subsets
of these characteristics, none do so for all of them.

For example, many research groups have developed enormously detailed models of spe-
cific parallel hardware/parallel software systems and used these to accurately predict per-
formance. This includes efforts by Hoare [13], Milner [21] , Alur and Dill [2, 3], Fortune
and Wylie [5], Kranzlmüller and Volkert [17], Schaubschläger [26], Magnusson et al. [19]
and Hughes et al. [15] (see Grove’s thesis [9] for a thorough review of these and other
works). These sorts of performance models, however, suffer from a number of problems.
They are typically very complex and time-consuming to create and are large and expensive
to solve. They are not usually very flexible, so new models need to be constructed for every
new situation. They can also be difficult to understand, because they are usually completely
numerical rather than symbolic. Such models are therefore not very useful in the design
stage of a parallel program, when it is necessary to quickly decide upon an effective par-
allel architecture and algorithm for a given problem from a very large number of possible
choices.

www.manaraa.com

208 GROVE AND CODDINGTON

At the other end of the spectrum, simple abstract models such as Amdahl’s Law [4],
Hockney’s asymptotic r∞ / n1/2 model [14] and Grama et al.’s isoefficiency function [6] al-
low the performance of parallel programs under different conditions to be quickly and easily
estimated. While these techniques provide reasonable ball-park estimates of performance
in some cases, they are too simplistic to provide much useful information for most real
parallel applications because they do not take into account any of the complex, non-linear
effects such as contention and non-determinism which play such an important part in the
performance of large parallel systems, especially on clusters.

It seems that the most promising modelling techniques lie somewhere in between.
Even at this intermediate level though, all previous modelling techniques, such as those
proposed by Adve [1], Mehra et al. [20], Parashar and Hariri [24], Jonkers [16], van
Gemund [27], Labarta et al. [18] and Dunlop and Hey [12] fail to strike an ideal bal-
ance between accuracy, flexibility, implementation and evaluation costs (see Grove’s the-
sis [9] for a detailed discussion of the advantages and disadvantages of each of these
approaches). While the PEVPM modelling technique also adopts an intermediate level
approach and draws upon the best ideas of many of the previous intermediate level tech-
niques, it also introduces an intermediate level cost means of accounting for a number
of performance effects that were previously only able to be modelled by detailed low
level models. Therefore, in contrast to previous modelling techniques, the PEVPM mod-
elling technique combines generality, ease-of-use, excellent accuracy and low evaluation
cost.

5. Modelling MPI program performance with PEVPM

We developed the Performance Evaluating Virtual Parallel Machine to address the need for
a sufficiently accurate and powerful yet generally accessible technique for estimating the
performance of parallel programs. PEVPM focuses particularly on accurately modelling
communication times in parallel programs, including the effects of contention and potential
non-determinism in the program execution. PEVPM is based on a set of parallel program
primitives, or building blocks, that can be used to compose the computation and commu-
nication structure of any message-passing parallel program. These primitives map to a set
of performance directives that can be used to either annotate existing source code or to
express some algorithmic idea in a standalone manner. A Performance Evaluating Virtual
Parallel Machine executes a model of the parallel program based on these performance
directives to simulate the time-structure of the program on some real or hypothetical par-
allel machine, thereby predicting program performance. Complete details of the PEVPM
modelling system can be found elsewhere [9, 10].

Two properties make this essentially execution-driven simulation novel: its ability to
abstractly simulate the direct performance effects of contention; and its ability to simulate
the indirect performance effects caused by non-deterministic program execution due to that
contention. This is achieved by dynamically creating submodels of individual computation
and communication events using Monte Carlo sampling techniques, based on data depen-
dencies, current contention levels in the system and detailed probability distributions of
the performance of all low-level operations for a given parallel machine. These probability

www.manaraa.com

COMMUNICATION BENCHMARKING AND PERFORMANCE MODELLING 209

distributions can either be theoretical, or empirically determined by benchmarking low-level
operations with MPIBench.

In order to determine the contention that will be faced by any particular message at any
point in the execution of the program, PEVPM maintains a contention scoreboard that
stores the state of all outstanding communication operations at any point in the simulation,
including message sources and destinations, departure times and sizes. Message metadata
is added to the contention scoreboard during PEVPM sweep phases, which simulate the
execution of all running process until they each reach a decision point. Decision points occur
when the execution structure of a particular process must diverge on the basis of dynamic
program information, such as whether a particular message has arrived yet or not. When all
processes have been simulated up to a decision point, a PEVPM match phase is initiated,
which determines the arrival time of all messages in transit, based on the information stored
in the contention scoreboard and the probability distributions of communication times
associated with each of those messages. These probability distributions are a function of
message size and the total number of messages on the scoreboard (i.e. contention level).
Once the arrival times of messages are determined, these can be matched with an appropriate
receive call, which will then determine what is to happen at the associated decision point
and therefore allow program execution to continue during the next sweep phase. When
matches occur, the messages they relate to are removed from the contention scoreboard.
PEVPM evaluation operates as a series of interleaved sweep/match phases until no more
decision points are encountered, which signifies the termination of the program being
simulated. This modelling process enables the PEVPM methodology to produce highly
accurate performance estimations for only a low-moderate evaluation cost.

Because PEVPM simulations evolve the program in virtual time, they automatically ac-
count for the effects of overlapping communication with computation, load imbalance and
insufficient parallelism. Coupled with the ability to explicitly model communication and
synchronisation losses and the associated resource contention issues of each (by sampling
from distributions of communication times), the PEVPM methodology accounts for all the
sources of both performance and performance loss in message-passing parallel programs.
Furthermore, because all of these events can be annotated, PEVPM is capable of automat-
ically determining and highlighting the location and extent of performance loss due to any
source. In addition, it can also automatically discover program deadlock and help program-
mers trace down race conditions. Lastly, there is potential for the PEVPM methodology to
be enhanced so that it produces entirely symbolic performance models rather than empiri-
cal ones, which would allow for even lower evaluation cost and would make the PEVPM
approach even more attractive for very wide-ranging parametric-based performance studies.

6. PEVPM performance modelling of an example program

This section describes the PEVPM modelling of a parallelised Jacobi Iteration program
on Perseus. Jacobi Iteration is a common parallel computing example because it is simple
to explain yet has the same basic computation-communication pattern as all parallel algo-
rithms with regular and local communication, including the large and important class of
algorithms that perform stencil calculations on regular meshes of data. We have also tested

www.manaraa.com

210 GROVE AND CODDINGTON

the PEVPM using applications that are standard examples of the two other general classes
of communication patterns in parallel programs: a Fast Fourier Transform as an example
of a program with regular and global communication; and a bag of tasks (or task farm) as
an example of a program with irregular communication. While the results for those appli-
cations are presented elsewhere [9, 10], the PEVPM provides similarly good performance
predictions in those cases compared to the Jacobi Iteration example presented here.

Figure 5 shows the skeleton code for the Jacobi Iteration program, which includes all
of the core computation and communication routines that have an effect on performance.
Conceptually, every point in the grid is iteratively updated to be the average of its four
neighbours (excepting boundary values, which do not change). Parallelism is introduced by
a one-dimensional data decomposition that splits the grid into n subgrids, one for each of
the processes involved in the computation. During each iteration, every process transfers the
edge of its subgrid to any immediate neighbours in a regular-local communication phase and
performs the computation on its subgrid in conjunction with any edge data that it received.

In a real problem, the iteration of communication and computation phases would termi-
nate when some desired level of convergence was obtained between grid and griddash.
Because that termination condition is data dependent, it could only be determined by actual
execution of every computation, which would defeat the purpose of performance mod-
elling. Therefore the example code simply terminates after 1000 iterations. This is perfectly
reasonable, as performance comparisons between runs of the Jacobi Iteration on differ-
ent configurations of a machine make far more sense on a per iteration basis. Note that
since the PEVPM execution samples from PDFs of communication times, many iterations
are needed to give an accurate average time per iteration. The PEVPM approach is like a
Monte Carlo simulation of performance, and the number of iterations can be chosen so that
the statistical error in the mean is negligibly small.

The skeleton code in Figure 5 has been annotated with PEVPM directives according
the rules detailed in Grove’s thesis [9]. This simple translation process took only a few
minutes by hand, but could easily be carried out by an automated compiler with little or
no human intervention. The PEVPM Loop directive specifies iteration; the Runon specifies
code that should only run on certain processors, parameterised by procnum and numprocs;
the Message directive stipulates a message transfer of a certain type and size between
processes to and from; and the Serial directive defines the computation time required to
execute a serial code segment.

There are a number of existing methods capable of accurately predicting the run-time
of serial segments of computation. However, as the current version of PEVPM is mainly
focused on accurately modelling the communication performance of parallel programs, an
empirical model was used to abstract over the performance details of serial code segments.
To simplify this process, a 256 × 256 grid size was chosen so that the problem size would
always fit into cache memory when using 1 to 128 processors. This problem size also ensured
that the times required for computation and communication were not so disproportionate
as to render either one unimportant. One iteration of the stencil computation was actually
run on Perseus and the execution time was measured. Because the per-processor amount
of computation required for each iteration of the stencil calculations varies inversely with
the number of processors available, the Serial computation time for each iteration of

www.manaraa.com

COMMUNICATION BENCHMARKING AND PERFORMANCE MODELLING 211

stencil computations was modelled by the measured execution time divided by numprocs.
For larger problem sizes that do not fit into cache memory, the fraction of the problem
size on each processor that fits into cache will vary with the number of processors used,
causing a variation in the serial computation time. A simple approach for this type of regular

(Part 1/2)

Figure 5. Skeleton code for the Jacobi Iteration with PEVPM annotations. (Continued on next page.)

www.manaraa.com

212 GROVE AND CODDINGTON

(Part 2/2)

Figure 5. (Continued).

application would be to estimate the computation times for serial code segments using the
measured execution time of the sequential program for a problem size equal to the size of
the sub-problem on each processor for the parallel program running on a specified number
of processors.

www.manaraa.com

COMMUNICATION BENCHMARKING AND PERFORMANCE MODELLING 213

We now evaluate the utility of the PEVPM methodology with regard to the model char-
acteristics that were listed in Section 4. Firstly, the generality of the PEVPM methodology
has been partially demonstrated through its applicability to a regular-local code. Demon-
strations of the PEVPM’s applicability to the other two possible types of parallel program,
namely regular-global codes and irregular codes, can be found elsewhere [9, 10]. Secondly,
the flexibility of the PEVPM approach has been implicitly demonstrated; because impor-
tant program and machine parameters (such as procnum, numprocs and ostensibly data size
arguments, by using appropriate compiler techniques) are retained symbolically in PEVPM
models, those models can be easily re-evaluated under different input and environmental
conditions. Thirdly, the demonstrated simplicity of adding PEVPM annotations to exist-
ing code, and its potential for automation, is testament to the low-cost of PEVPM model
creation.

The PEVPM directives listed in Figure 5 were translated into a C language driver program,
which therefore mimics the computation and communication structure of the actual Jacobi
Iteration program. Because the driver program merely reflected the control structure defined
by the PEVPM directives, it only took several minutes to generate by hand; note, however,
that this process could be automated by using appropriate compiler techniques. This driver
program was linked with an implementation of the PEVPM match/sweep algorithms and
then run a number of times with different machine size parameters to predict the performance
of the Jacobi Iteration for many configurations of Perseus. These performance predictions,
presented as speedups, are plotted as dashed (or dotted) lines in Figure 6. The speedups
observed while actually executing the Jacobi Iteration code on Perseus in corresponding
situations were also measured and those results are plotted as solid lines in the same figure.

There are two classes of performance predictions in Figure 6. Firstly, there are PEVPM
predictions made using performance distributions of constituent message-passing opera-
tions, which were measured with MPIBench as described in Section 3. These performance
estimates (the dashed lines in Figure 6) are very accurate, always predicting completion
time to within 5% and usually to within 1%. These predictions were consistently accu-
rate, regardless of the number of processors used. This suggests that the small prediction
errors that were observed were mainly due the granularity (i.e. histogram bin size) of the
benchmark results that were input into the PEVPM simulation, rather than any underlying
deficiency in the PEVPM approach. If desired, these errors could be reduced even further
by using smaller bin sizes, at the cost of greater solution time requirements. Our constant
and high accuracy predictions across such a wide range of machine sizes are unprecedented
– other general performance modelling techniques rapidly lose the ability to make accurate
predictions for parallel programs as the number of processors is increased [9].

One of the main reasons for inaccurate predictions by conventional modelling tech-
niques when a large number of processors are involved can be seen in the second class of
PEVPM predictions. These more simplistic performance predictions, shown by dotted lines
in Figure 6, were made by inputting minimum or average benchmark results into the PEVPM
evaluations instead of complete performance distributions. As denoted in the legend for the
various results, these minimum and average times were garnered from MPIBench 2 × 1
process benchmarks, i.e. simple ping-pong benchmarks like those produced by existing MPI
benchmarking tools, or by MPIBench n × p process benchmarks, which most existing MPI

www.manaraa.com

214 GROVE AND CODDINGTON

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8 16 32 64 128

S
pe

ed
up

Total number of processors

Perseus: Average speedups for Jacobi iteration test

linear
x1 min-2x1-predicted
x1 avg-2x1-predicted

x1 predicted
x1 measured
x2 predicted
x2 measured

x1 avg-nx1-predicted
x1 avg-nx2-predicted

Figure 6. PEVPM-predicted average speedups and measured average speedups for the Jacobi Iteration test using
2 − 64 × 1 − 2 processes on Perseus.

benchmarking tools do not provide. These flawed predictions highlight the inaccuracies that
result from using simple benchmark results.

Even for this simple regular-local program, the general performance prediction methods
described in Section 4 are prone to large errors, which tend to grow in proportion with the
total number of processors utilised. In particular, simplistic prediction methods utilising 2×1
process ping-pong data will always overestimate performance, because they do not account
for the flow-on effects of contention in a parallel system. Using averages from MPIBench
n × p process benchmarks to provide a crude accounting for contention will produce
results of intermediate quality. How well this method will predict performance, however,
depends on a number of ungeneralisable factors including how well actual communication
performance can be approximated by a single value, the regularlity and granularity of the
communication pattern employed by the application.

Hence, while simplistic performance prediction methods may possibly be useful for
modelling the performance of parallel programs running on a small number of processors,
they are inadequate for modelling large-scale parallel programs, where contention effects
become very important. For parallel programs running on a large number of processors, ac-
curate performance models must take the complete performance distributions of constituent
message-passing operations into account, instead of just their ideal or average performances.
This is especially important on clusters using commodity networks, where contention for
network resources quickly limits performance.

www.manaraa.com

COMMUNICATION BENCHMARKING AND PERFORMANCE MODELLING 215

With regard to model evaluation cost, the 11 hours and 15 minutes of processor time
consumed by actually running the Jacobi Iteration program on Perseus were simulated in
just under 10 minutes by our prototype (i.e. unoptimised) PEVPM implementation running
on just one processor of Perseus. This comparison shows that PEVPM simulated the Jacobi
program on Perseus at about 67.5 times its actual execution speed. Interestingly, the PEVPM
algorithms themselves are close to embarrassingly parallel, so a parallel implementation of
PEVPM would be even faster.

7. Conclusions

There are a number of limitations to the current tools that are being used for benchmarking
the communication performance of cluster computers, and the tools that can be used for
modelling the performance of parallel programs on those clusters. This paper presented an
overview of two related tools that we have developed for more accurately measuring and
modelling the performance of message-passing libraries and parallel programs on cluster
computers.

MPIBench is a very useful tool for analysing the performance of MPI communication
libraries on parallel computers. It can provide accurate and detailed probability distribu-
tions of communication times, rather than just averages. This is particularly useful for
clusters using commodity Ethernet networks, where there may be significant variation in
communication times due to network congestion.

The PEVPM approach to performance modelling provides a simple procedure for ob-
taining fast and accurate performance predictions of message-passing parallel programs
on distributed memory machines. One of the key features of PEVPM is that it can sim-
ulate the execution of a parallel program by sampling from probability distributions of
message-passing communication times generated by MPIBench, and thus take into account
the effects of network contention. This is particularly useful when modelling clusters that
use commodity networks, where communication overhead can have a significant impact on
the performance and scalability of many parallel programs.

We have demonstrated that the PEVPM approach of utilising probability distributions of
communication times provides very accurate estimates of the performance and scalability
of MPI parallel programs, whereas modelling performance using average or minimum
communication times can give misleading results.

The current implementation of PEVPM is still a prototype for demonstrate its general
concept. Several of the steps in the modelling process must be done by hand. While these
are all fairly straightforward, they could be quite time-consuming for large programs. We
are aiming to automate most or all of these processes in future versions.

Acknowledgments

This research was supported in part by the Advanced Computational Systems and Research
Data Networks Cooperative Research Centres, and a Faculty Small Research Grant. We
are grateful to the South Australian Partnership for Advanced Computing (SAPAC) and

www.manaraa.com

216 GROVE AND CODDINGTON

the South Australian Computational Chemistry Facility for providing time on the Perseus
cluster. Thanks also to Francis Vaughan for helpful discussions.

References

1. V. Adve. Analyzing the Behavior and Performance of Parallel Programs. PhD thesis, University of Wisconsin,
Computer Sciences Department, December 1993.

2. R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time systems. In Proceedings of
the 18th International Conference on Automata, Languages and Programming (LNCS 510), 1991.

3. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–236, 1994.
4. G. Amdahl. Validity of the single-processor approach to achieving large scale computing capabilities. Pro-

ceedings of the American Federation of Information Processing Societies, 30:483–485, 1967.
5. S. Fortune and J. Wylie. Parallelism in random access machines. In Proceedings of the 10th ACM Symposium

on Theory of Computing, pp. 114–118, 1978.
6. A. Grama, A. Gupta, and V. Kumar. Isoefficiency: Measuring the scalability of parallel algorithms and

architectures. IEEE Parallel and Distributed Technology, 1(3):12–21, 1993.
7. W. Gropp and E. Lusk. Reproducible measurements of MPI performance characteristics. In Proceedings of

the PVM/MPI Users’ Group Meeting (LNCS 1697), pp. 11–18, 1999.
8. D. A. Grove and P. D. Coddington. Precise MPI performance measurement using MPIBench. In Proceedings

of HPC Asia, September 2001.
9. D. A. Grove. Performance Modelling of Message-Passing Parallel Programs. PhD thesis, University of

Adelaide, Department of Computer Science, January 2003.
10. D. A. Grove and P. D. Coddington. Modeling message-passing programs with a performance evaluating virtual

parallel machine. Performance Evaluation: An International Journal, 60:165–187, 2005.
11. K. Hawick, D. Grove, P. Coddington, and M. Buntine. Commodity cluster computing for computational

chemistry. Internet Journal of Chemistry, 3(4), 2000.
12. A. J. Hey, A. N. Dunlop, and E. Hernández. Realistic parallel performance estimation. Parallel Computing,

23(1/2):5–21, 1997.
13. C. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, New Jersey, 1985.
14. R. Hockney. Performance parameters and benchmarking of supercomputers. Parallel Computing, 17(10),

1991.
15. C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve. Rsim: Simulating shared-memory multiprocessors

with ILP processors. IEEE Computer, February 2002.
16. H. Jonkers. Performance Analysis of Parallel Systems: A Hybrid Approach. PhD thesis, Delft University of

Technology, Information Technology and Systems, October 1995.
17. D. Kranzlmüller and J. Volkert. NOPE: A nondeterministic program evaluator. In Proceedings of the 4th

International ACPC Conference (LNCS 1557), pp. 490–499, 1992.
18. J. Labarta, S. Girona, Pillet, C. A. T. V., and L. Gregoris. DiP: A parallel program development environment.

In Proceedings of the 2nd International Euro-Par Conference, vol. II, pp. 665–674, August 1996.
19. P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Höllberg, J. Högberg, F. Larsson, A. Moestedt,

and B. Werner. Simics: A full system simulation platform. IEEE Computer, February 2002.
20. P. Mehra, C. Schulback, and J. Yan. A comparison of two model-based performance prediction techniques for

message-passing parallel programs. In Proceedings of the ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pp. 181–189, May 1994.

21. R. Milner. A calculus of communicating systems. In Lecture Notes in Computer Science (92). Springer-Verlag,
New York, 1980.

22. P. J. Mucci, K. London, and J. Thurman. The MPBench report. Technical Report UT-CS-98-394, University
of Tenessee, Department of Computer Science, November 1998.

23. Pallas GmbH. Pallas MPI benchmarks home page. http://www.pallas.com/e/produces/pmb/.
24. M. Parashar. Interpretive Performance Prediction for High Performance Parallel Computing. PhD thesis,

Syracuse University, Department of Electrical and Computer Engineering, July 1994.

www.manaraa.com

COMMUNICATION BENCHMARKING AND PERFORMANCE MODELLING 217

25. R. Reussner, P. Sanders, and J. Larsson Träff. SKaMPI: A comprehensive benchmark for public benchmarking
of MPI. Scientific Computing, 10, 2001.

26. C. Schaubschläger. Automatic testing of nondeterministic programs in message passing systems. Master’s
thesis, Johannes Kepler University Linz, Department for Computer Graphics and Parallel Processing, 2000.

27. A. van Gemund. Performance Modeling of Parallel Systems. PhD thesis, Delft University of Technology,
Information Technology and Systems, April 1996.

28. F. Vaughan, D. Grove, and P. Coddington. Network performance issues in two high performance cluster
computers. In Proceedings of the Australasian Computer Science Conference, February 2003.

www.manaraa.com

